Docs
  1. Official Endpoint - v1beta
Docs
  • Introduction
  • Quick Start Guide
  • Make a request
  • YEScale System API Tutorial
  • Chat Models
    • ChatGpt
      • ChatGPT (Audio)
        • Create transcription by gpt-4o-mini-transcribe & gpt-4o-transcribe
        • Create a voice with gpt-4o-mini-tts
        • Create a voice
        • Create a transcript
        • Create translation
      • ChatGPT (Chat)
        • Chat completion object
        • Create chat completion (streaming)
        • Create chat completion (non-streaming)
        • Create chat image recognition (streaming)
        • Create chat image recognition (streaming) base64
        • Create chat image recognition (non-streaming)
        • Function calling
        • N choices
        • Create chat function call (only non-streaming)
        • Create structured output
      • ChatGPT (Completions)
        • Completion object
        • Creation completed
      • ChatGPT(Embeddings)
        • Embedded Object
        • Create embed
    • Anthropic Claude
      • Offical Format
        • Messages (official Anthropic format)
        • Messages(Image Recognition)
        • Messages(function call)
        • Messages(Web search)
      • Create chat completion (streaming)
      • Create chat completion (non-streaming)
      • Create chat image recognition (streaming)
      • Create chat image recognition (non-streaming)
    • Gemini
      • Official Endpoint - v1beta
        • Text generation
          POST
        • Thinking with Gemini 2.5
          POST
        • Structured output
          POST
        • Function calling
          POST
        • Grounding with Google Search
          POST
        • URL context
          POST
        • Gemini TTS
          POST
      • OpenAI Endpoint Chat
        • Gemini Image creation interface (gemini-2.0-flash-exp-image-generation)
        • Chat interface
        • Image recognition interface
        • Function calling - Google Search
        • Function calling - codeExecution
    • Deepseek
      • Deepseek v3.1
  • Image Models
    • GPT-IMAGE-1
      • Generate Image by gpt-image-1
      • Edit Image by gpt-image-1
    • QWEN IMAGE
      • Generate Image by qwen-image
      • Edit Image by qwen-image-edit
    • MJ
      • Submit Imagine task (mj_imagine)
      • Submit Blend task (mj_blend)
      • Submit Describe task (mj_describe)
      • Submit Change task (mj_variation, mj_upscale,mj_reroll)
      • Query task status based on task ID
    • Ideogram
      • Generate with Ideogram 3.0
      • Edit with Ideogram 3.0
      • Remix with Ideogram 3.0
      • Ideogram Upscale
    • Kling Image
      • Submit Image Generation
      • Get Image by Task ID
      • Submit Kolors Virtual Try On
      • Get Kolors Virtual Try On by Task ID
    • Flux
      • Flux on Replicate
        • Submit Image by flux-kontext-pro
        • Submit Image by flux-kontext-max
        • Submit Image by flux-pro
        • Submit Image by flux-pro-1.1-ultra
        • Get Image by ID
    • Recraft API
      • Recraft Image
      • Generate Image
      • Generate Vector Image
      • Remove Background
      • Clarity Upscale
      • Generative Upscale
    • Models use Dall-e Format
      • Google Imagen
      • Bytedance - seedream-3.0
      • Recraftv3 use Dall-e endpoint
      • Flux use Dall-e endpoint
      • Bytedance - Seedream-4.0
    • Google Imagen
      • Google/imagen-4 on Replicate
      • Get Imagen 4 Task
    • Gemini-2.5-flash-image
      • Official Endpoint
        • Image generation with Gemini (aka Nano Banana)
        • Image editing (text-and-image-to-image)
      • OpenAI Chat
        • Create Text to Image
        • Edit Image - Base64 Image -> Image
      • Create Text to Image (Dall-e endpoint)
      • Edit Image (Gpt-image-1 Endpoint)
    • DALL·E 3
      POST
  • Video Models
    • Kling Video
      • Create Video by Text
      • Get Video by Task ID(text2video)
      • Create Video by Image
      • Get Video by Task ID(image2video)
    • Runway ML Video
      • Create Video by Runway
      • Get Video by Task ID
    • Luma Video
      • Create Video by Luma
      • Get Video by Task ID
    • Pika Video
      • Create Video by Pika
      • Get Video by Task ID
    • Google Veo
      • Submit Video Request
      • Submit Video Request with Frames
      • Get Video by ID
    • Minimax - Hailuo
      • Submit Video Request
      • Get Video
    • Seedance
      • Submit Video Request
      • Get Video by Task ID
    • Mj Video
      • Submit Mj Video Request
      • Get Mj Video by task id
  • FAL-AI Models
    • Images Models
      • Ideogram/v3/remix
      • Flux-pro/kontext/max
      • Fal-bytedance-seededit-v3-edit-image
      • Fal-recraft-v3-text-to-image
      • Fal-recraft-v3-image-to-image
      • Fal-recraft-upscale-crisp
    • Audio Models
      • Minimax/speech-02-hd
      • Minimax/speech-02-turbo
      • Elevenlabs/tts/turbo-v2.5
      • Elevenlabs/tts/multilingual-v2
      • Elevenlabs/tts/eleven-v3
    • Video Models
      • Topaz/upscale/video
      • Luma-dream-machine/ray-2-flash/reframe
      • Luma-dream-machine/ray-2/reframe
      • Kling/Lipsync- Audio2Video
      • Kling/Lipsync- Text2Video
    • Get FAL-AI tasks
  • Music Model - Suno
    • Illustrate
    • Parameter
    • Task submission
      • Generate songs (inspiration, customization, continuation)
      • Generate lyrics
    • Query interface
      • Query a single task
  • Python Samples
    • python openai official library (using AutoGPT, langchain, etc.)
    • Python uses speech to text
    • Python uses text to speech
    • Python uses Embeddings
    • python calls DALL·E
    • python simple call openai function-calling demo
    • python langchain
    • python llama_index
    • Python uses gpt-4o to identify pictures-local pictures
    • python library streaming output
    • Python uses gpt-4o to identify images
  • Plug-in/software usage tutorials
    • Setting HTTP for Make.com with Yescale
    • Sample Code for gpt-4o-audio/gpt-4o-mini-audio
  • Help Center
    • HTTP status codes
  • Tutorials
    • GPT-Image-1 API: A Step-by-Step Guide With Examples
    • Claude Code via YEScale API
    • Task Sync Endpoint Usage Guide
  1. Official Endpoint - v1beta

Function calling

POST
/v1beta/models/{model_name}:generateContent

Request

Path Params

Header Params

Body Params application/json

Example
{
  "contents": [
    {
      "role": "user",
      "parts": [
        {
          "text": "Create a bar chart titled ''Quarterly Sales'' with data: Q1: 50000, Q2: 75000, Q3: 60000."
        }
      ]
    }
  ],
  "tools": [
    {
      "functionDeclarations": [
        {
          "name": "create_bar_chart",
          "description": "Creates a bar chart given a title, labels, and corresponding values.",
          "parameters": {
            "type": "object",
            "properties": {
              "title": {
                "type": "string",
                "description": "The title for the chart."
              },
              "labels": {
                "type": "array",
                "items": {
                  "type": "string"
                },
                "description": "List of labels for the data points (e.g., [''Q1'', ''Q2'', ''Q3''])."
              },
              "values": {
                "type": "array",
                "items": {
                  "type": "number"
                },
                "description": "List of numerical values corresponding to the labels (e.g., [50000, 75000, 60000])."
              }
            },
            "required": [
              "title",
              "labels",
              "values"
            ]
          }
        }
      ]
    }
  ]
}

Request Code Samples

Shell
JavaScript
Java
Swift
Go
PHP
Python
HTTP
C
C#
Objective-C
Ruby
OCaml
Dart
R
Request Request Example
Shell
JavaScript
Java
Swift
curl --location --request POST '/v1beta/models/:generateContent' \
--header 'x-goog-api-key;' \
--header 'Content-Type: application/json' \
--data-raw '{
  "contents": [
    {
      "role": "user",
      "parts": [
        {
          "text": "Create a bar chart titled '\'''\''Quarterly Sales'\'''\'' with data: Q1: 50000, Q2: 75000, Q3: 60000."
        }
      ]
    }
  ],
  "tools": [
    {
      "functionDeclarations": [
        {
          "name": "create_bar_chart",
          "description": "Creates a bar chart given a title, labels, and corresponding values.",
          "parameters": {
            "type": "object",
            "properties": {
              "title": {
                "type": "string",
                "description": "The title for the chart."
              },
              "labels": {
                "type": "array",
                "items": {
                  "type": "string"
                },
                "description": "List of labels for the data points (e.g., ['\'''\''Q1'\'''\'', '\'''\''Q2'\'''\'', '\'''\''Q3'\'''\''])."
              },
              "values": {
                "type": "array",
                "items": {
                  "type": "number"
                },
                "description": "List of numerical values corresponding to the labels (e.g., [50000, 75000, 60000])."
              }
            },
            "required": [
              "title",
              "labels",
              "values"
            ]
          }
        }
      ]
    }
  ]
}'

Responses

🟢200OK
application/json
Body

Example
{
    "candidates": [
        {
            "content": {
                "parts": [
                    {
                        "functionCall": {
                            "name": "create_bar_chart",
                            "args": {
                                "values": [
                                    50000,
                                    75000,
                                    60000
                                ],
                                "labels": [
                                    "Q1",
                                    "Q2",
                                    "Q3"
                                ],
                                "title": "Quarterly Sales"
                            }
                        },
                        "thoughtSignature": "CrwCAVSoXO6EoYxWDOjmW0KWyjPe2NNq9fYcHQCpm9/TDtu7/AJwPoGS4YHi0S9XTEyJI38oqLlNAesf+qlI5EEBT52qRZ3kZUyuvg2RGaEs9HftvKjfXr428bcGKt5rQC+qgjE0siHzEHSbKLSEmdStS3qAoTQIY1RTuLYQoWtEjYee4trE9BSVY8Tco654BXd/TlO8aySPbuNqYF1m+0L49RpyPtkdwPCT+oBUhnM4OxlRlI69d68rAjtsWVCDPg2TdpElfRgO80W1qAWC/i1zyjHEyXZ84hG1cy7+z9d/Zk7z563eA6lonKVFYPQ8fKjaLqDrStOtNb7MPAduOkyZejPBo0N/XQFWwbswbH5nsL8kHxCkqE8MtFlLCLZWcS3iqZ9zl2vnxjITugb9IM9OdTXtQtNCstJMjuVw9Q=="
                    }
                ],
                "role": "model"
            },
            "finishReason": "STOP",
            "index": 0
        }
    ],
    "usageMetadata": {
        "promptTokenCount": 181,
        "candidatesTokenCount": 56,
        "totalTokenCount": 335,
        "promptTokensDetails": [
            {
                "modality": "TEXT",
                "tokenCount": 181
            }
        ],
        "thoughtsTokenCount": 98
    },
    "modelVersion": "gemini-2.5-flash",
    "responseId": "HuK6aLnJKq_mqtsPkZen8A0"
}
Modified at 2025-09-05 13:33:21
Previous
Structured output
Next
Grounding with Google Search
Built with